On the Algebraic Complexity of Some Families of Coloured Tutte Polynomials

نویسندگان

  • MARTIN LOTZ
  • JOHANN A. MAKOWSKY
چکیده

We investigate the coloured Tutte polynomial in Valiant’s algebraic framework of NP-completeness. Generalising the well known relationship between the Tutte polynomial and the partition function from the Ising model, we establish a reduction from the permanent to the coloured Tutte polynomial, thus showing that its evaluation is a VNP−complete problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of the Bollobás-Riordan Polynomial

The coloured Tutte polynomial by Bollobás and Riordan is, as a generalisation of the Tutte polynomial, the most general graph polynomial for coloured graphs that satisfies certain contractiondeletion identities. Jaeger, Vertigan, and Welsh showed that the classical Tutte polynomial is #P-hard to evaluate almost everywhere by establishing reductions along curves and lines. We establish a similar...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Counting planar maps, coloured or uncoloured

We present recent results on the enumeration of q-coloured planar maps, where each monochromatic edge carries a weight ν. This is equivalent to weighting each map by its Tutte polynomial, or to solving the q-state Potts model on random planar maps. The associated generating function, obtained by Olivier Bernardi and the author, is differentially algebraic. That is, it satisfies a (nonlinear) di...

متن کامل

Tutte polynomials of hyperplane arrangements and the finite field method

The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002